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Abstract. This paper analyses the data clustering problem from the
continuous black-box optimization point of view and proposes method-
ological guidelines for a standard benchmark of clustering problem in-
stances. Clustering problems have been used many times in the litera-
ture to evaluate evolutionary, metaheuristic and other global optimiza-
tion algorithms. However much of this work has occurred independently
and the various experimental methodologies used have produced results
which tend to be incomparable and provide little collective wisdom as to
the difficulty of the problems used, or an objective measure for compar-
ing and evaluating the performance of algorithms. This paper surveys
some of the clustering literature and results to identify issues relevant
for benchmarking. A set of 27 problem instances ranging from 4-D to
40-D and based on three well-known datasets is identified. To establish
some pilot results on this benchmark set, experiments are presented for
the Covariance Matrix Adaptation-Evolution Strategy and several other
standard algorithms. A web-repository has also been created for this
problem set to facilitate better experimental evaluations of algorithms.

Keywords: Algorithm Benchmarking, Continuous Black-box Optimiza-
tion, Clustering

1 Introduction

In evolutionary computation and metaheuristic optimization, an enormous num-
ber of algorithms have been developed. Since no algorithm is superior in the the-
oretical, No Free Lunch sense, in practice the performance differences we observe
depend on how well the mechanisms of the algorithm match the structure of the
problem landscape. A key step towards understanding the matching between
problems and algorithms is to develop better benchmark problems and more
rigorous approaches to the experimental analysis of algorithms. Unfortunately,
the dominating paradigm in the literature has been to continually develop new
algorithm variants and to evaluate these techniques in isolation. For continuous
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black-box optimization, artificial test functions (e.g. Sphere, Rastrigin, Rosen-
brock) have been used hundereds of times, but a question such as“what is the
best performance of a black-box optimization algorithm on function f , given
105 functions evaluations?” seems to be difficult (if not impossible) to answer
using the literature. The situation is even more problematic, because subtle dif-
ferences in experimental settings in different papers (e.g. using a different bound
on the feasible search space) mean that results are often not strictly compara-
ble. Recently, research has begun to focus more on such experimental issues.
For example, the Black-Box Optimization Benchmarking (BBOB) problem set1

resolves many of these issues by standardizing many aspects of the experimental
setting. However, it is very important to also evaluate algorithms on real-world
problems, since it is difficult to know how well artificial test problems represent
real-world problems and hence to what extent algorithm performance on artificial
problems is indicative of real-world performance. It can be difficult to use real-
world problems for algorithm benchmarking because real problems may require
expert domain knowledge to configure, or may come with additional complexities
that are not part of the basic optimization algorithm (e.g. complex constraints).
Ideally, problems that are real-world “representative” while being convenient for
benchmarking should provide a valuable contribution to experimental research
practice.

This paper examines data clustering as a useful source of continuous, black-
box benchmark problems. In Section 2, the sum of squares clustering problem
is defined and its key properties discussed. Clustering problems have previously
been used in the literature to test optimization algorithms: Section 4 reviews
some of this literature and discusses why it is difficult to compare with previ-
ously reported results. A specification is proposed to describe clustering prob-
lem instances and a set of problem instances defined (and made available via
the web). To establish some baseline results for future comparison, a number of
commonly-used algorithms are applied to the clustering problem sets. The ex-
periments are described in Section 5 and Results presented in Section 6. Where
possible, the results are also compared with previous results from the literature,
revealing some surprising insights. The work is summarised in Section 7.

2 Clustering

The sum of squares clustering problem (see, e.g.[13]) can be stated as follows.
Given a set X = {x1, . . . ,xn} ⊆ IRd of n data points, find a set of k cluster
centers C = {c1, . . . , ck} ∈ IRd to minimize:

f(C|X ) =

n∑
i=1

k∑
j=1

bi,j ||xi − cj ||2

where

bi,j =

{
1 if ||xi − cj || = minj ||xi − cj ||
0 otherwise.

1 http://coco.gforge.inria.fr/doku.php
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The problem variables are the coordinates of the cluster centres in the data space.
Let the d-dimensional coordinates of ci = (yd(i−1)+1, yd(i−1)+2, . . . , ydi), then we
have an unconstrained, continuous optimization problem of dimensionality dk:

min f(y),y ∈ IRdk

A clustering problem instance is therefore defined by a dataset, X and a value
of k.

An equivalent problem from operations research is the (continuous, uncapaci-
tated) location-allocation problem , also known as facility location or multisource
Weber problem [2, 9]. Given a set of customers to be serviced by a set of facil-
ities, the problem is to position the facilities to optimize a criterion measuring
overall service. Under the following conditions:

– the set of customer locations is given by X ,
– the set of facility locations be C,
– assuming equal customer weightings, unlimited capacity of facilities to pro-

vide service and Euclidean distances between customers and facilities,

the problem then reduces to the sum of squares clustering problem.
Clustering is a fundamental task in machine learning, data analysis and op-

erations research. Finding a global optimum is known to be NP-hard, even in the
restricted cases where d = 2 or k = 2. A large number of algorithms have been
proposed for clustering, though there is little doubt that the k-means algorithm
is the most widely known and used [11]. From an optimization perspective, k-
means is a local iterative optimization algorithm which follows a non-increasing
trajectory over f . It is not a black-box algorithm, nevertheless its popularity
makes it frequently used in experimental comparative studies. Note also that
solving the optimization problem (i.e. locating cluster centres) is often not the
final goal of clustering. Further analysis might include studying which data points
are assigned to which cluster centre, or producing a classifier, where each cluster
represents a class in the data set and the class label of future data points can
then be predicted (e.g. using the minimum distance from the cluster centres).

3 Why Use Clustering Problems for Black-Box
Optimization Benchmarking?

Clustering problems have a number of properties which suggest that they might
provide an extremely useful source of benchmark problems for the evaluation
and comparison of algorithms:

– They seem to be generally challenging to solve.
– They are scalable in dimensionality (via d and k).
– They are “real-world” problems in data analysis (i.e. datasets can come from

real-world problems).
– They are unconstrained, meaning that black-box algorithms can be readily

applied without the need for a constraint-handling mechanism.
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– They can be implemented relatively simply and do not require a large amount
of problem-domain-specific knowledge to understand.

– The objective function is not expensive to evaluate.

There are currently few (if any) benchmark problem sets that have all of the
above properties. This suggests an exciting opportunity to improve on and in-
crease the utility of experimental black-box algorithm evaluation and comparison
by building a standardised set of clustering problem instances.

4 Black-box Optimization Approaches to Clustering

Given the fundamental nature of the clustering problem and data analysis, it is
not surprising that hundreds of clustering algorithms have been proposed in the
literature. At the same time, general-purpose metaheuristics and other optimiza-
tion techniques have also been applied to clustering problems. This paper does
not attempt an exhaustive review of all this work, but rather aims to extract
the important issues to be considered in developing a specification of clustering
problems for black-box optimization benchmarking.

4.1 Difficulties in Comparing with Previous Results

One of the major difficulties in trying to compare an algorithm with previous
work stems from the lack of standard in the way authors present their results.
Clustering results are presented in a variety of ways in the literature [13]. While
the sum of squares objective function is frequently used, the actual function
values (and the number of evaluations made by the algorithm) obtained are
sometimes not reported. Instead, measures of cluster shape around the cluster
centres produced have been used (e.g. the Rand index is used by Chang et al.
to evaluate their genetic algorithm variant [3]). When the intended application
is classification, measures such as classification accuracy on the data are used
(e.g. Liu et al.[7] evaluate a fuzzy C-means, genetic algorithm based fuzzy C-
means and an immunodominance clonal selection fuzzy C-means algorithm in
this way).

While clustering problems have been widely used to compare algorithms, the
datasets that have been used also vary from paper to paper. Some authors gen-
erate artificial datasets with known structure/distributions. There are a large
number of benchmark datasets available in machine learning, and different au-
thors select different datasets to use. Focussing on specific datasets would clearly
improve the comparability of results for black-box optimization algorithms.

Finally, there are many experimental factors that are not specific to clustering
problems that can impact on future comparisons of results. The fundamental
performance results are in terms of the best objective function values found
(or statistics of such values over multiple trials) and the number of function
evaluations used. Presenting results in figures has several advantages, but on
the other hand it is often difficult to read off numerical values from a graph
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for comparison. Full details of the experimental configuration (e.g. algorithm
parameter settings, termination criteria, number of repeated trials) are essential
to permit fair comparison and reproduction of results.

4.2 Results Selected for Comparison

The literature was further reviewed for experimental results that could be com-
pared in a black-box optimization context. A representative number of ap-
proaches were identified:

– Maulik [8] develops a real-valued genetic algorithm (GA) for clustering and
compares with k-means.

– Ye and Chen [14] apply particle swarm optimization (PSO), ant colony op-
timization (ACO) and a honey bees algorithm.

– Kao and Cheng [6] develop an ant colony optimization algorithm and com-
pare it with a previous ACO clustering algorithm (due to Shelokar et al.[10])
and k-means.

– Fathian et al.[5] present a honey bee mating algorithm and compare it with
ACO, a GA, Tabu search (TS) and simulated annealing (SA).

– Taherdangkoo et al.[12] propose a blind, naked mole-rats algorithm and com-
pare it with k-means, two GA variants, PSO, ACO, simulated annealing and
artificial bee colony algorithms.

These papers have each used different datasets to evaluate and compare algo-
rithms. One problem instance is common across all the papers - these results are
compared in Section 6.1.

4.3 Clustering Problem Instances

In the literature, many different datasets have been utilized to evaluate and
compare clustering algorithms. Sometimes, authors generate artificial test data
with known clustering structure. This can be useful, for example to visualize
results. However if the exact dataset used is not available, then results can only
be compared qualitatively. Benchmark datasets have also been widely used, such
as those from the UCI Machine Learning Repository [1]. In particular, Du Merle
et al.[4] used an interior point algorithm to compute approximate global opti-
mum values for problem based on the Iris, Ruspini and German Towns (Spath)
datasets. This is useful because we can assess the performance of algorithms
relative to the optimal value on these problems. These datasets have also been
used in other papers, therefore the following set of problem instances is used:

– The Iris dataset, with d = 4, k = 2, . . . , 10 and initial search space [0.1, 7.9]dk.
– The Ruspini dataset, with d = 2, k = 2, . . . , 10 and initial search space

[4, 156]dk.
– The German Towns dataset, with d = 3, k = 2, . . . , 10 and initial search

space [24.49, 1306024]dk.
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Clustering Problem Specification To be useful for black-box optimization
evaluation, a clustering problem should be specified with the following elements:

1. A dataset, X of dimensionality d.
2. A value of k.
3. An initial bounded search space, which contains the global optimum. This

can be done by using the minimum and maximum value in the dataset as
the upper and lower bounds of the search space. For simplicity the overall
minimum and maximum are used for every variable. A tighter search space
could consider the minimum and maximum of each variable independently,
however the implementation would be more complex.

To facilitate future use of these problems, a web repository has been created
at http://realopt.uqcloud.net/crwr.html. The repository records the specifica-
tions of each problem instance, the global optimum (solution vector and objec-
tive function value) and a copy of the dataset. This will be extended to record
results on these problems from the literature.

5 Experimental Details

To make a comparison and establish some results for the selected clustering
problems, the following algorithms were evaluated:

– CMA-ES: the Matlab implementation of the Covariance Matrix Adaptation
Evolution Strategy available from
https://www.lri.fr/∼hansen/cmaes inmatlab.html was used with default pa-
rameter settings (as recommended, the initial search variance was set to 2/3
of the search space.

– CMA-ES (50,100): the same implementation of CMA-ES but with a (larger)
population size of 50.

– NM: the Nelder-Mead simplex algorithm, as implemented in the Matlab
fminsearch function. Default parameter settings were used, with termina-
tion criteria extended so that the algorith ran until a tolerance of change
in variables or function values was less than 10−10, or if 3 × 105 function
evaluations were reached. The algorithm is initialized at a random point in
the search space for each trial.

– RS: uniform random search over the search space. The algorithm was given
105 function evaluations.

– KM: the k-means clustering algorithm. Cluster centers were initialized to be
randomly selected data points (this is probably the most common method
in the literature but there are many other possibilities [11]).

The algorithms were chosen firstly because they can be applied with little set-
ting of internal parameters. In addition: CMA-ES is a well-regarded black-box
algorithm; NM is the standard Matlab solver; KM is a standard non-black-box
clustering algorithm; RS provides a useful baseline. Each algorithm was run for
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50 restarts. Note that the different algorithms ran for different numbers of func-
tion evaluations. The intention was not to impose a fixed budget of function
evaluations across the algorithms but to allow them to use the amount of re-
sources they request to“converge”. Results on these problems can be of interest
for any reasonable budget of function evaluations. Future research may choose to
focus on a “limited budget” scenario or on finding high quality solutions using a
possibly large number of function evaluations. Different algorithm specifications
will be more suitable to different budgets of function evaluations and any result
that improves upon previous results makes a worthwhile contribution.

6 Results

The experimental results are shown in Tables 1 and 2. Overall, CMA(50,100)
gave the best performance, with average values that were closer to the optimal
value that the other techniques. It required between 10000 and 50000 function
evaluations. CMA used a smaller population size (determined automatically)
and used between 2000 and 25000 function evaluations. The results were very
similar on some problems (e.g. for Ruspini n = 4, 6, 10) but an order of magni-
tude worse on others (e.g. German, n = 8−20). The NM results are considerably
worse across the problem sets than CMA(50,100) and worse than CMA for the
Iris and Ruspini problems, but (interestingly) better on the German Towns prob-
lems. As a local search algorithm, it does however use a much smaller budget
of function evaluations: between 1000 and 8000. As a completely non-local algo-
rithm, RS outperforms the standard Matlab solver (NM) on most of the Ruspini
problem instances! Finally, KM as a non-black-box solver has a considerable
advantage over the other algorithms. It converges very quickly, taking less than
20 iterations/function evaluations across the problems tested. Its performance is
relatively good, however CMA(50,100) still provides better performance on all
problem instances! This is an impressive result for a black-box solver and ex-
perimentally demonstrates that metaheuristics are able to outperform problem-
specific algorithms, and that global/population-based search would seem to lead
to results that are difficult to obtain with a local/trajectory-based algorithm.
With such small requirements for function evaluations, large amount of restarts
could be performed for KM. Nevertheless the results here over 50 runs at least
indicate that the fitness landscapes of clustering problems contain structure that
causes problems for the standard solver in this problem domain.

On most problems (shown with bold), CMA(50,100) found the global opti-
mum on at least one of the 50 trials. The exceptions were some of the larger
problems on the German Towns problems. It is an open question to establish
results on these problems to see how many functions evaluations are required
to locate the global optimum. KM finds the global optimum for around half
of the problems (lower dimensions) and CMA and NM do so for some of the
smaller problem instances. Figs 1-3 compare the average fitness performance
of the algorithms over the problems from each dataset. Results are given as a
performance ratio with the global optimum value for each problem instance.
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Table 1. Results for clustering problems. Problem instances are defined by a dataset
(D), i.e. Iris (I), Ruspini (R) or German towns (G), together with the problem dimen-
sionality (n), where n = dk. Shown are mean and standard deviations over 50 trials
of each algorithm. The mean and average number of function evaluations (#f) is also
shown for each algorithm. A result is in bold if one or more of the 50 trials located the
global optimum (f∗) to at least 15 significant figures.

D n f∗ CMA(50,100) CMA(50,100) #f CMA CMA #f
I 8 1.52348e02 1.523480e02(0.0e00) 1.1168e04(2.9e02) 2.68733e02(2.2e02) 2.41780e03(2.1e02)

12 7.88514e01 7.885144e01(0.0e00) 1.7136e04(5.7e02) 1.96530e02(1.8e02) 3.77214e03(5.3e02)
16 5.72285e01 5.922328e01(5.0e00) 2.1938e04(7.4e02) 1.26181e02(8.8e01) 4.98944e03(5.9e02)
20 4.64462e01 4.904783e01(2.3e00) 2.5092e04(9.5e02) 1.20999e02(8.9e01) 6.58952e03(9.8e02)
24 3.90400e01 4.076697e01(3.5e00) 2.7466e04(1.3e03) 1.06623e02(8.9e01) 8.39298e03(1.3e03)
28 3.42982e01 3.554887e01(1.4e00) 3.0220e04(1.1e03) 8.90713e01(3.3e01) 9.90306e03(1.2e03)
32 2.99889e01 3.232285e01(2.1e00) 3.3250e04(9.3e02) 8.84456e01(3.3e01) 1.20515e04(1.8e03)
36 2.77861e01 2.946070e01(1.9e00) 3.6432e04(1.4e03) 8.38895e01(2.9e01) 1.46102e04(2.4e03)
40 2.58341e01 2.705470e01(1.3e00) 3.9214e04(1.5e03) 8.00406e01(3.2e01) 1.67537e04(3.0e03)

R 4 8.93378e04 8.93378e04(0.0e00) 1.3842e04(4.2e03) 8.93378e04(0.0e00) 1.4188e03(3.0e02)
6 5.10635e04 5.11278e04(4.4e01) 1.9382e04(2.9e03) 5.11094e04(4.8e01) 3.2726e03(3.2e02)
8 1.28811e04 1.28811e04(0.0e00) 1.6822e04(5.1e03) 1.66519e04(1.2e04) 2.8380e03(7.9e02)
10 1.01267e04 1.10334e04(6.3e02) 2.0862e04(4.9e03) 1.14295e04(1.2e03) 3.1720e03(2.2e02)
12 8.57541e03 8.84859e03(6.8e02) 2.2022e04(1.1e03) 9.86935e03(9.6e02) 3.8949e03(2.1e02)
14 7.12620e03 7.55527e03(7.4e02) 2.5912e04(2.3e03) 8.76290e03(1.4e03) 4.9135e03(7.2e02)
16 6.14964e03 6.43566e03(3.5e02) 2.8792e04(2.7e03) 7.75958e03(1.5e03) 5.7632e03(6.7e02)
18 5.18165e03 5.64378e03(2.0e02) 3.1892e04(4.3e03) 6.67363e03(1.1e03) 6.1772e03(7.1e02)
20 4.446.28e03 4.80930e03(2.5e02) 3.1822e04(2.4e03) 6.87915e03(1.4e03) 7.2632e03(1.5e03)

G 6 6.02546e11 6.02547e11(0.0e00) 1.6282e04(4.7e03) 1.55257e12(8.2e11) 3.6002e03(4.5e02)
9 2.94506e11 3.08336e11(2.9e10) 2.2952e04(5.5e03) 1.04493e12(8.0e11) 5.4150e03(8.9e02)
12 1.04474e11 1.42481e11(8.0e10) 2.8652e04(8.1e03) 1.05834e12(7.8e11) 7.3940e03(1.7e03)
15 5.97615e10 7.46629e10(1.5e10) 3.2272e04(5.0e03) 8.33722e11(7.2e11) 1.0106e04(2.4e03)
18 3.59085e10 4.80932e10(9.0e09) 3.3402e04(1.5e03) 5.99661e11(6.0e11) 1.19768e04(1.4e03)
21 2.19832e10 4.40172e10(9.4e09) 3.9092e04(2.6e03) 4.31552e11(1.5e11) 1.44593e04(1.8e03)
24 1.33854e10 3.11688e10(1.2e10) 4.0962e04(2.6e03) 4.17723e11(1.6e11) 1.82163e04(1.4e03)
27 7.80442e09 2.26611e10(1.2e10) 4.6382e04(3.5e03) 4.05634e11(1.8e11) 2.09944e04(1.9e03)
30 6.44647e09 2.80614e10(1.2e10) 4.9872e04(5.8e03) 4.19464e11(1.7e11) 2.3522e04(3.2e03)
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Fig. 1. Performance results (mean best fitness) for the Iris (I) dataset problems, as a
ratio with the globally optimal value (e.g. a value of 2.5 means the average best solution
found by an algorithm was 2.5 times the value of the global optimum.
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Table 2. Results for clustering problems. Problem instances are defined by a dataset
(D), i.e. Iris (I), Ruspini (R) or German towns (G), together with the problem dimen-
sionality (n), where n = dk. Shown are mean and standard deviations over 50 trials
of each algorithm. The mean and average number of function evaluations (#f) is also
shown for each algorithm. A result is in bold if one or more of the 50 trials located the
global optimum (f∗) to at least 15 significant figures.

D n NM NM #f RS KM KM #f
I 8 5.1208e02(2.5e02) 1.0938e03(5.8e02) 2.93656e02(4.1e01) 1.52348e02(0.0e00) 4.66e00(1.4e00)

12 3.7454e02(2.6e02) 1.6421e03(6.1e02) 2.60478e02(3.0e01) 8.79682e01(2.3e01) 6.94e00(2.9e00)
16 3.0047e02(2.4e02) 2.0770e03(5.5e02) 2.39601e02(2.8e01) 6.24359e01(6.9e00) 8.2e00(3.7e00)
20 2.6579e02(2.2e02) 2.6568e03(8.8e02) 2.2239e02(2.7e01) 5.37562e01(8.8e00) 9.18e00(3.6e00)
24 2.6285e02(2.3e02) 3.0913e03(1.3e03) 2.1431e02(1.9e01) 4.66559e01(8.7e00) 7.86e00(2.9e00)
28 2.6404e02(2.2e02) 3.8847e03(2.8e03) 2.0180e02(2.4e01) 4.09041e01(5.5e00) 8.82e00(3.4e00)
32 1.7233e02(1.3e02) 4.3597e03(1.4e03) 1.9722e02(1.8e01) 3.70879e01(7.5e00) 8.34e00(2.8e00)
36 1.6729e02(1.1e02) 5.0430e03(2.8e03) 1.9432e02(1.9e01) 3.39236e01(3.8e00) 7.78e00(2.1e00)
40 1.3556e02(3.2e01) 5.8026e03(2.3e03) 1.8527e02(1.8e01) 3.09606e01(10.3e01) 8.52e00(3.0e00)

R 4 8.9338e04(0.0e00) 5.03e02(2.5e01) 9.01376e04(4.0e02) 9.67212e04(2.3e04) 3.82e00(1.5e00)
6 6.6428e04(2.1e04) 8.004e02(1.3e02) 5.37281e04(1.0e03) 5.11096e04(4.6e01) 3.70e00(1.5e00)
8 3.5846e04(2.1e04) 1.275e03(3.3e02) 1.99433e04(2.3e03) 2.83654e04(1.8e04) 3.99e00(1.6e00)
10 3.5366e04(2.1e04) 1.9712e03(1.3e03) 1.65256e04(1.6e03) 1.86163e04(1.5e04) 4.45e00(1.6e00)
12 2.7332e04(2.0e04) 4.203e03(2.8e03) 1.50499e04(1.0e03) 1.46650e04(1.2e04) 4.66e00(1.7e00)
14 2.6147e04(2.0e04) 7.4512e03(2.8e03) 1.36176e04(1.0e03) 1.07800e04(7.7e03) 5.08e00(1.7e00)
16 2.5967e04(2.1e04) 7.5234e03(4.4e03) 1.24834e04(1.0e03) 9.58363e03(6.8e03) 5.00e00(1.7e00)
18 2.4995e04(2.1e04) 1.1427e04(3.9e03) 1.15749e04(7.4e02) 8.22721e03(5.1e03) 5.01e00(1.7e00)
20 1.0728e04(1.2e03) 5.9614e03(2.1e03) 1.09593e04(7.1e02) 6.97757e03(3.9e03) 5.30e00(1.7e00)

G 6 1.5526e12(8.7e11) 9.908e02(4.1e02) 1.08704e12(1.6e11) 6.51273e11(1.6e10) 5.95e00(1.4e00)
9 4.1772e11(1.7e11) 2.8568e03(1.4e03) 9.12653e11(1.3e11) 3.63195e11(3.7e09) 9.07e00(1.5e00)
12 5.7125e11(1.7e11) 2.1122e03(6.1e02) 8.50900e11(9.5e10) 2.73230e11(3.1e10) 1.51e01(2.8e00)
15 4.9316e11(1.5e11) 3.0132e03(1.8e03) 7.83531e11(8.3e10) 2.49510e11(4.4e10) 1.55e01(3.2e00)
18 3.3045e11(1.8e11) 7.8998e03(7.5e03) 7.50905e11(9.0e10) 2.29057e11(6.0e10) 1.53e01(5.3e00)
21 3.2013e11(3.5e10) 5.0868e03(4.4e02) 6.66544e11(8.9e10) 2.09148e11(8.1e10) 1.43e01(4.2e00)
24 4.5023e11(1.8e11) 4.2644e03(1.4e03) 6.67006e11(8.7e10) 1.79267e11(9.8e10) 1.39e01(4.3e00)
27 2.8713e11(2.1e11) 7.598e03(4.1e03) 6.50674e11(8.4e10) 1.35754e11(1.1e11) 1.33e01(3.6e00)
30 2.7033e11(9.7e10) 6.4218e03(1.5e03) 6.34447e11(8.7e10) 1.10532e11(1.0e11) 1.32e01(4.0e00)
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Fig. 2. Performance results (mean best fitness) for the Ruspini (R) dataset problems,
as a ratio with the globally optimal value.
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Fig. 3. Performance results (mean best fitness) for the German towns (G) dataset
problems, as a ratio with the globally optimal value.

The trends as problem dimensionality increases give some indication of the scal-
ing behaviour of the performance of each algorithm. As expected, random search
steadily increases (given a fixed budget of function evaluations). Some individual
problem instances also appear to be particularly challenging for the algorithms
tested. For example, the 8D Ruspini problem appears more difficult for KM and
CMA, than both the 6D and the 10D Ruspini problem instances (Fig.2). Note
also that the German towns problems lead to poor performance ratios for the
algorithms compared to the other datasets (in Fig.3 the y-axis is on a log scale).

The comparative results in Figs 1-3 give a general indication of performance,
but it is important to note that average fitness values are a relatively gross sum-
mary of the results and may hide important details. For example, the average
performance of CMA on the 12D and 15D German towns problems (Fig.3) is
slightly worse than random search! However, Table 1 shows that the standard
deviation of CMA results on these problems is relatively large. Further inves-
tigation of these results revealed that many trials found solutions much better
than the average, but a number of other trials converged to a poor solution
considerably worse. Hence, the average is a poor summary of such results.

6.1 Comparison with Previous Results

Table 3 shows the results reported by previous papers for one of the problem
instances tested, Iris with k = 3. A variety of algorithms have been tested on
this problem. Comparing these results with those from above, the most striking
thing is that all of these reported results are relatively poor. The average ob-
jective function values are far from optimal and are significantly outperformed
by CMA(50,100). These results tend to be based on fewer function evaluations,
but the papers do not seem to be targetting a “low budget” scenario, but rather
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evaluating the potential of the algorithms. Another significant anomaly is the
differences between the k-means (KM, SBKM) results reported in these papers
(average values between 97 and 101) and the result obtained in this paper for
KM on this problem (8.79682e01(2.3e01)). There may be a difference in the ini-
tialization technique used which is not mentioned in all papers. In any case,
there are clearly unresolved questions here, demonstrating the need for the de-
velopment of standard specifications and experimental practice when evaluating
black-box optimization algorithms.

Table 3. Previous results for the Iris (k=3, n=12) problem. A question mark (?) means
that it is not clear from the paper what value was used in the experiments.

Reference Algorithm fave Evals

[8] GA 97.10077 (5 times!) 104

[8] KM (best trial of 5) 97.204574

[14] KM 98.1872 ?
[14] Fuzzy c-means 96.9280 ?
[14] AKPSO 96.7551 ?

[6] KM 99.84 104

[6] Shelokar ACO 97.78 104

[6] ACOC 97.22 104

[5] HBM 96.95316 11214
[5] ACO 97.171546 10998
[5] GA 125.197025 38128
[5] TS 97.868008 20201
[5] SA 97.134625 29103

[12] SBKM 101.3672 3e04(?)
[12] GAPS 97.3868 3e04(?)
[12] VGAPS 96.2022 3e04(?)
[12] PSO 96.0176 3e04(?)
[12] ACO 99.9176 3e04(?)
[12] SA 101.4574 3e04(?)
[12] BNMR 95.0927 3e04(?)

7 Summary

This paper has examined sum of squares clustering problems as a source of
real-world benchmark problems for the evaluation and comparison of black-box
optimization algorithms. It was shown that clustering problems have many useful
properties for benchmarking. To facilitate better comparisons of algorithms and
experimental results, a specification was provided for clustering problems and a
web repository has been created. Experimental results were presented on a set of
27 clustering problems and some comparisons made with existing results in the
literature. It is intended that future work will build on and add to the problems
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specified here, with additional datasets. Also, future research should be able to
make better use of published experimental results on clustering problems.
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